

Q. 21A multirange voltmeter can be constructed by using a galvanometer circuit as shown in figure. We want to construct a voltmeter that can measure 2V, 20V and 200V using a galvanometer of resistance 10Ω and that produces maximum deflection for current of 1 mA. Find R_1 , R_2 and R_3 that have to be used.

K Thinking Process

A galvanometer can be converted into voltmeter by connecting a very high resistance wire connected in series with galvanometer. The relationship is given by I_g (G+R)=V where I_g is range of galvanometer, G is resistance of galvanometer and R is resistance of wire connected in series with galvanometer.

Ans.

Applying expression in different situations

For
$$i_G (G + R_1) = 2$$
 for 2V range
For $i_G (G + R_1 + R_2) = 20$ for 20V range
and For $i_G (G + R_1 + R_2 + R_3) = 200$ for 200V range

On solving, we get R_1 = 1990 Ω , R_2 = 18k Ω and R_3 = 180 k Ω .